| Sr no. | class members | # points | points | 1 | y2 = x3 + 101x | 93 | (0,0) (3,50) (3,105) (5,45) (5,110) (8,55) (8,100) (13,10) (13,145) (20,10) (20,145) (22,25) (22,130) (27,20) (27,135) (32,65) (32,90) (37,35) (37,120) (45,60) (45,95) (47,15) (47,140) (50,25) (50,130) (52,25) (52,130) (53,25) (53,130) (55,60) (55,95) (58,20) (58,135) (60,10) (60,145) (62,0) (63,65) (63,90) (65,50) (65,105) (67,45) (67,110) (68,35) (68,120) (70,55) (70,100) (75,10) (75,145) (78,15) (78,140) (82,10) (82,145) (83,25) (83,130) (93,0) (98,45) (98,110) (107,60) (107,95) (112,25) (112,130) (113,10) (113,145) (115,25) (115,130) (117,60) (117,95) (120,20) (120,135) (122,10) (122,145) (125,65) (125,90) (127,50) (127,105) (130,35) (130,120) (132,55) (132,100) (137,10) (137,145) (138,60) (138,95) (140,15) (140,140) (143,25) (143,130) (145,25) (145,130) (148,60) (148,95) (153,10) (153,145) | 2 | y2 = x3 + 16x | 93 | (0,0) (2,65) (2,90) (5,40) (5,115) (8,50) (8,105) (13,55) (13,100) (15,40) (15,115) (17,15) (17,140) (28,55) (28,100) (30,75) (30,80) (33,65) (33,90) (35,60) (35,95) (37,70) (37,85) (40,25) (40,130) (42,40) (42,115) (48,15) (48,140) (50,70) (50,85) (52,55) (52,100) (55,45) (55,110) (62,0) (67,40) (67,115) (68,70) (68,85) (70,50) (70,105) (73,40) (73,115) (75,55) (75,100) (77,40) (77,115) (83,55) (83,100) (90,55) (90,100) (92,75) (92,80) (93,0) (95,65) (95,90) (97,60) (97,95) (98,40) (98,115) (102,25) (102,130) (108,40) (108,115) (110,15) (110,140) (112,70) (112,85) (117,45) (117,110) (123,75) (123,80) (128,60) (128,95) (130,70) (130,85) (132,50) (132,105) (133,25) (133,130) (135,40) (135,115) (137,55) (137,100) (143,70) (143,85) (145,55) (145,100) (148,45) (148,110) (152,55) (152,100) | 3 | y2 = x3 + 51x | 93 | (0,0) (3,5) (3,150) (5,15) (5,140) (7,55) (7,100) (13,15) (13,140) (17,75) (17,80) (23,45) (23,110) (25,25) (25,130) (30,45) (30,110) (35,50) (35,105) (38,55) (38,100) (40,45) (40,110) (42,30) (42,125) (47,75) (47,80) (48,75) (48,80) (50,35) (50,120) (52,65) (52,90) (60,75) (60,80) (62,0) (65,5) (65,150) (67,15) (67,140) (73,30) (73,125) (75,15) (75,140) (78,75) (78,80) (83,65) (83,90) (85,45) (85,110) (87,25) (87,130) (92,45) (92,110) (93,0) (97,50) (97,105) (98,15) (98,140) (100,55) (100,100) (102,45) (102,110) (110,75) (110,80) (112,35) (112,120) (118,25) (118,130) (122,75) (122,80) (123,45) (123,110) (127,5) (127,150) (128,50) (128,105) (133,45) (133,110) (135,30) (135,125) (137,15) (137,140) (140,75) (140,80) (143,35) (143,120) (145,65) (145,90) (147,45) (147,110) (153,75) (153,80) | 4 | y2 = x3 + 1x | 93 | (0,0) (2,45) (2,110) (7,65) (7,90) (10,55) (10,100) (12,60) (12,95) (13,65) (13,90) (17,30) (17,125) (23,10) (23,145) (27,5) (27,150) (28,30) (28,125) (32,70) (32,85) (33,45) (33,110) (37,25) (37,130) (38,65) (38,90) (40,5) (40,150) (42,65) (42,90) (43,60) (43,95) (47,50) (47,105) (48,30) (48,125) (57,5) (57,150) (58,5) (58,150) (62,0) (63,70) (63,85) (68,25) (68,130) (72,55) (72,100) (73,65) (73,90) (75,65) (75,90) (78,50) (78,105) (85,10) (85,145) (88,5) (88,150) (90,30) (90,125) (93,0) (95,45) (95,110) (100,65) (100,90) (102,5) (102,150) (103,55) (103,100) (105,60) (105,95) (110,30) (110,125) (120,5) (120,150) (125,70) (125,85) (130,25) (130,130) (133,5) (133,150) (135,65) (135,90) (137,65) (137,90) (140,50) (140,105) (147,10) (147,145) (150,5) (150,150) (152,30) (152,125) | 5 | y2 = x3 + 71x | 93 | (0,0) (10,25) (10,130) (12,10) (12,145) (13,50) (13,105) (15,10) (15,145) (23,25) (23,130) (25,65) (25,90) (28,15) (28,140) (32,45) (32,110) (35,10) (35,145) (40,60) (40,95) (42,60) (42,95) (43,10) (43,145) (45,55) (45,100) (55,20) (55,135) (57,35) (57,120) (60,25) (60,130) (62,0) (63,45) (63,110) (72,25) (72,130) (73,60) (73,95) (75,50) (75,105) (77,10) (77,145) (85,25) (85,130) (87,65) (87,90) (88,35) (88,120) (90,15) (90,140) (93,0) (97,10) (97,145) (102,60) (102,95) (103,25) (103,130) (105,10) (105,145) (107,55) (107,100) (108,10) (108,145) (117,20) (117,135) (118,65) (118,90) (122,25) (122,130) (125,45) (125,110) (128,10) (128,145) (133,60) (133,95) (135,60) (135,95) (137,50) (137,105) (138,55) (138,100) (147,25) (147,130) (148,20) (148,135) (150,35) (150,120) (152,15) (152,140) (153,25) (153,130) | 6 | y2 = x3 + 36x | 93 | (0,0) (2,55) (2,100) (8,5) (8,150) (15,65) (15,90) (17,10) (17,145) (18,30) (18,125) (20,65) (20,90) (22,30) (22,125) (25,70) (25,85) (27,65) (27,90) (28,50) (28,105) (30,5) (30,150) (33,55) (33,100) (48,10) (48,145) (50,45) (50,110) (52,60) (52,95) (53,30) (53,125) (55,5) (55,150) (57,25) (57,130) (58,65) (58,90) (62,0) (70,5) (70,150) (77,65) (77,90) (80,30) (80,125) (82,65) (82,90) (83,60) (83,95) (87,70) (87,85) (88,25) (88,130) (90,50) (90,105) (92,5) (92,150) (93,0) (95,55) (95,100) (108,65) (108,90) (110,10) (110,145) (112,45) (112,110) (113,65) (113,90) (115,30) (115,125) (117,5) (117,150) (118,70) (118,85) (120,65) (120,90) (123,5) (123,150) (132,5) (132,150) (142,30) (142,125) (143,45) (143,110) (145,60) (145,95) (148,5) (148,150) (150,25) (150,130) (152,50) (152,105) | 7 | y2 = x3 + 126x | 93 | (0,0) (3,70) (3,85) (7,35) (7,120) (8,30) (8,125) (10,20) (10,135) (12,35) (12,120) (17,55) (17,100) (18,65) (18,90) (22,20) (22,135) (25,50) (25,105) (30,20) (30,135) (35,45) (35,110) (38,35) (38,120) (42,50) (42,105) (43,35) (43,120) (47,25) (47,130) (48,55) (48,100) (53,20) (53,135) (57,50) (57,105) (60,40) (60,115) (62,0) (65,70) (65,85) (70,30) (70,125) (72,20) (72,135) (73,50) (73,105) (78,25) (78,130) (80,65) (80,90) (87,50) (87,105) (88,50) (88,105) (92,20) (92,135) (93,0) (97,45) (97,110) (100,35) (100,120) (103,20) (103,135) (105,35) (105,120) (110,55) (110,100) (115,20) (115,135) (118,50) (118,105) (122,40) (122,115) (123,20) (123,135) (127,70) (127,85) (128,45) (128,110) (132,30) (132,125) (135,50) (135,105) (140,25) (140,130) (142,65) (142,90) (150,50) (150,105) (153,40) (153,115) | 8 | y2 = x3 + 81x | 93 | (0,0) (15,70) (15,85) (17,20) (17,135) (18,25) (18,130) (20,45) (20,110) (23,55) (23,100) (28,65) (28,90) (32,50) (32,105) (35,35) (35,120) (37,50) (37,105) (40,30) (40,125) (48,20) (48,135) (50,20) (50,135) (52,40) (52,115) (55,50) (55,105) (57,20) (57,135) (60,35) (60,120) (62,0) (63,50) (63,105) (68,50) (68,105) (77,70) (77,85) (80,25) (80,130) (82,45) (82,110) (83,40) (83,115) (85,55) (85,100) (88,20) (88,135) (90,65) (90,90) (93,0) (97,35) (97,120) (102,30) (102,125) (108,70) (108,85) (110,20) (110,135) (112,20) (112,135) (113,45) (113,110) (117,50) (117,105) (122,35) (122,120) (125,50) (125,105) (128,35) (128,120) (130,50) (130,105) (133,30) (133,125) (142,25) (142,130) (143,20) (143,135) (145,40) (145,115) (147,55) (147,100) (148,50) (148,105) (150,20) (150,135) (152,65) (152,90) (153,35) (153,120) | 9 | y2 = x3 + 56x | 93 | (0,0) (3,65) (3,90) (5,70) (5,85) (10,45) (10,110) (18,50) (18,105) (22,10) (22,145) (23,30) (23,125) (30,25) (30,130) (35,65) (35,90) (37,5) (37,150) (42,5) (42,150) (45,5) (45,150) (47,30) (47,125) (50,55) (50,100) (53,10) (53,145) (55,65) (55,90) (60,60) (60,95) (62,0) (65,65) (65,90) (67,70) (67,85) (68,5) (68,150) (72,45) (72,110) (73,5) (73,150) (78,30) (78,125) (80,50) (80,105) (85,30) (85,125) (92,25) (92,130) (93,0) (97,65) (97,90) (98,70) (98,85) (103,45) (103,110) (107,5) (107,150) (112,55) (112,100) (115,10) (115,145) (117,65) (117,90) (122,60) (122,95) (123,25) (123,130) (127,65) (127,90) (128,65) (128,90) (130,5) (130,150) (135,5) (135,150) (138,5) (138,150) (140,30) (140,125) (142,50) (142,105) (143,55) (143,100) (147,30) (147,125) (148,65) (148,90) (153,60) (153,95) | 10 | y2 = x3 + 111x | 93 | (0,0) (3,40) (3,115) (7,60) (7,95) (8,25) (8,130) (10,70) (10,85) (15,55) (15,100) (18,55) (18,100) (22,15) (22,140) (27,40) (27,115) (32,40) (32,115) (37,75) (37,80) (38,60) (38,95) (42,45) (42,110) (45,50) (45,105) (50,65) (50,90) (53,15) (53,140) (57,70) (57,85) (58,40) (58,115) (60,55) (60,100) (62,0) (63,40) (63,115) (65,40) (65,115) (68,75) (68,80) (70,25) (70,130) (72,70) (72,85) (73,45) (73,110) (77,55) (77,100) (80,55) (80,100) (88,70) (88,85) (93,0) (100,60) (100,95) (103,70) (103,85) (107,50) (107,105) (108,55) (108,100) (112,65) (112,90) (115,15) (115,140) (120,40) (120,115) (122,55) (122,100) (125,40) (125,115) (127,40) (127,115) (130,75) (130,80) (132,25) (132,130) (135,45) (135,110) (138,50) (138,105) (142,55) (142,100) (143,65) (143,90) (150,70) (150,85) (153,55) (153,100) | 11 | y2 = x3 + 131x | 93 | (0,0) (5,25) (5,130) (7,50) (7,105) (8,45) (8,110) (10,35) (10,120) (12,75) (12,80) (13,5) (13,150) (15,15) (15,140) (17,45) (17,110) (20,55) (20,100) (22,75) (22,80) (27,30) (27,125) (28,75) (28,80) (32,15) (32,140) (37,45) (37,110) (38,50) (38,105) (43,75) (43,80) (48,45) (48,110) (53,75) (53,80) (58,30) (58,125) (60,65) (60,90) (62,0) (63,15) (63,140) (67,25) (67,130) (68,45) (68,110) (70,45) (70,110) (72,35) (72,120) (75,5) (75,150) (77,15) (77,140) (82,55) (82,100) (90,75) (90,80) (93,0) (98,25) (98,130) (100,50) (100,105) (103,35) (103,120) (105,75) (105,80) (108,15) (108,140) (110,45) (110,110) (113,55) (113,100) (115,75) (115,80) (120,30) (120,125) (122,65) (122,90) (125,15) (125,140) (130,45) (130,110) (132,45) (132,110) (137,5) (137,150) (152,75) (152,80) (153,65) (153,90) | 12 | y2 = x3 + 41x | 93 | (0,0) (2,20) (2,135) (5,50) (5,105) (7,45) (7,110) (12,40) (12,115) (13,70) (13,85) (20,35) (20,120) (22,55) (22,100) (23,20) (23,135) (27,50) (27,105) (28,25) (28,130) (30,50) (30,105) (33,20) (33,135) (37,20) (37,135) (38,45) (38,110) (43,40) (43,115) (45,30) (45,125) (47,65) (47,90) (52,35) (52,120) (53,55) (53,100) (58,50) (58,105) (62,0) (67,50) (67,105) (68,20) (68,135) (75,70) (75,85) (78,65) (78,90) (82,35) (82,120) (83,35) (83,120) (85,20) (85,135) (90,25) (90,130) (92,50) (92,105) (93,0) (95,20) (95,135) (98,50) (98,105) (100,45) (100,110) (105,40) (105,115) (107,30) (107,125) (113,35) (113,120) (115,55) (115,100) (120,50) (120,105) (123,50) (123,105) (130,20) (130,135) (137,70) (137,85) (138,30) (138,125) (140,65) (140,90) (145,35) (145,120) (147,20) (147,135) (152,25) (152,130) | 13 | y2 = x3 + 66x | 93 | (0,0) (2,35) (2,120) (3,15) (3,140) (12,65) (12,90) (15,5) (15,150) (18,75) (18,80) (20,50) (20,105) (22,45) (22,110) (23,75) (23,80) (25,15) (25,140) (32,25) (32,130) (33,35) (33,120) (35,55) (35,100) (43,65) (43,90) (45,45) (45,110) (52,75) (52,80) (53,45) (53,110) (55,30) (55,125) (57,45) (57,110) (62,0) (63,25) (63,130) (65,15) (65,140) (77,5) (77,150) (80,75) (80,80) (82,50) (82,105) (83,75) (83,80) (85,75) (85,80) (87,15) (87,140) (88,45) (88,110) (93,0) (95,35) (95,120) (97,55) (97,100) (105,65) (105,90) (107,45) (107,110) (108,5) (108,150) (113,50) (113,105) (115,45) (115,110) (117,30) (117,125) (118,15) (118,140) (125,25) (125,130) (127,15) (127,140) (128,55) (128,100) (138,45) (138,110) (142,75) (142,80) (145,75) (145,80) (147,75) (147,80) (148,30) (148,125) (150,45) (150,110) | 14 | y2 = x3 + 121x | 93 | (0,0) (2,70) (2,85) (3,55) (3,100) (10,65) (10,90) (12,55) (12,100) (13,40) (13,115) (20,60) (20,95) (23,15) (23,140) (25,40) (25,115) (27,45) (27,110) (30,70) (30,85) (33,70) (33,85) (40,50) (40,105) (43,55) (43,100) (45,25) (45,130) (47,55) (47,100) (55,40) (55,115) (57,75) (57,80) (58,45) (58,110) (62,0) (65,55) (65,100) (72,65) (72,90) (75,40) (75,115) (78,55) (78,100) (82,60) (82,95) (85,15) (85,140) (87,40) (87,115) (88,75) (88,80) (92,70) (92,85) (93,0) (95,70) (95,85) (102,50) (102,105) (103,65) (103,90) (105,55) (105,100) (107,25) (107,130) (113,60) (113,95) (117,40) (117,115) (118,40) (118,115) (120,45) (120,110) (123,70) (123,85) (127,55) (127,100) (133,50) (133,105) (137,40) (137,115) (138,25) (138,130) (140,55) (140,100) (147,15) (147,140) (148,40) (148,115) (150,75) (150,80) | 15 | y2 = x3 + 76x | 93 | (0,0) (2,25) (2,130) (3,10) (3,145) (5,65) (5,90) (7,10) (7,145) (8,60) (8,95) (12,25) (12,130) (15,50) (15,105) (17,25) (17,130) (18,15) (18,140) (25,45) (25,110) (27,60) (27,95) (30,35) (30,120) (33,25) (33,130) (38,10) (38,145) (40,55) (40,100) (42,20) (42,135) (43,25) (43,130) (48,25) (48,130) (52,10) (52,145) (58,60) (58,95) (62,0) (65,10) (65,145) (67,65) (67,90) (70,60) (70,95) (73,20) (73,135) (77,50) (77,105) (80,15) (80,140) (83,10) (83,145) (87,45) (87,110) (92,35) (92,120) (93,0) (95,25) (95,130) (98,65) (98,90) (100,10) (100,145) (102,55) (102,100) (105,25) (105,130) (108,50) (108,105) (110,25) (110,130) (118,45) (118,110) (120,60) (120,95) (123,35) (123,120) (127,10) (127,145) (132,60) (132,95) (133,55) (133,100) (135,20) (135,135) (142,15) (142,140) (145,10) (145,145) |
|---|